CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

CBCS, LOCF and NEP-2020 Based Curriculum and Syllabi Of M.Sc. Statistics

(w.e.f. 2021-2022)

DEPARTMENT OF STATISTICS SCHOOL OF BASIC SCIENCES

Approved by :BOSSchool BoardAcademic CouncilApproval Status :x or $\sqrt{}$ x or $\sqrt{}$ Approval Date :??

Table of Contents

Sr.	Contents	Page
No.		No.
	VISION AND MISSION	
1	Background	
	i) NEP-2020 and LOCF an integrated Approach	
	ii) about the subject	
	iii) About the Programme (Nature, extent and aims)	
	iv) Qualification Descriptors (possible career pathways)	
2	PROGRAMME OUTCOMES (POS)	
3	PROGRAMME SPECIFIC OUTCOMES (PSOS)	
4	POSTGRADUATE ATTRIBUTES	
5	STRUCTURE OF MASTERS COURSE	
6	LEARNING OUTCOME INDEX (Mapping of Courses with POs and	
	PSOs)	
7	SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION	
8	COURSE-LEVEL LEARNING OUTCOMES	
9	TEACHING-LEARNING PROCESS	
10	IMPLEMENTATION OF BLENDED LEARNING	
11	ASSESSMENT AND EVALUATION	
12	KEYWORDS	
13	REFERENCES	
14	APPENDICES	

Vision and Mission

Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through promotion of innovation, creative endeavours, and scholarly inquiry.

Mission

To serve as a beacon of change, through multi-disciplinary learning, for creation of knowledge community, by building a strong character and nurturing a value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research and innovation in pure and applied areas of learning.

1. Background

i) NEP-2020 and LOCF an integrated Approach

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of Central University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programmes in alignment with National Education Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted with the adoption of "Comprehensive Roadmap for Implementation of NEP-2020" in 32nd meeting of the Academic Council of the University held on April 23, 2021. The roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and indicative timeline for major academic reforms.

The process of revamping the curriculum started with the series of webinars and discussions conducted by the University to orient the teachers about the key features of the Policy, enabling them to revise the curriculum in sync with the Policy. Proper orientation of the faculty about the vision and provisions of NEP-2020 made it easier for them to appreciate and incorporate the vital aspects of the Policy in the revised curriculum focused on 'creating holistic, thoughtful, creative and well-rounded individuals equipped with the key 21st century skills' for the 'development of an enlightened, socially conscious, knowledgeable, and skilled nation'.

With NEP-2020 in background, the revised curricula articulate the spirit of the policy by emphasising upon—integrated approach to learning; innovative pedagogies and assessment strategies; multidisciplinary and cross-disciplinary education; creative and critical thinking; ethical and Constitutional values through value-based courses; 21st century capabilities across the range of disciplines through life skills, entrepreneurial and professional skills; community and constructive public engagement; social, moral and environmental awareness; Organic Living and Global Citizenship Education (GCED); holistic, inquiry-based, discovery-based, discussion-based, and analysis-based learning; exposure to Indian knowledge system, cultural traditions and classical literature through relevant courses offering 'Knowledge of India'; fine blend of modern pedagogies with indigenous and traditional ways of learning; flexibility in course choices; student-centric participatory learning; imaginative and flexible curricular structures to enable creative combination of disciplines for study; offering multiple entry and exit points initially in undergraduate programmes; alignment of Vocational courses with the International Standard Classification of Occupations maintained by the International Labour Organization; breaking the silos of disciplines; integration of extra-curricular and curricular aspects; exploring internships with local industry, businesses, artists and crafts persons; closer collaborations between industry and higher education institutions for technical, vocational and science programmes; and formative assessment tools to be aligned with the learning outcomes, capabilities, and dispositions as specified for each course. In case of UG programmes in Engineering and Vocational Studies, it was decided that the departments shall incorporate pertinent NEP recommendations while complying with AICTE, NBA, NSQF, International Standard Classification of Occupations, Sector Skill Council and other relevant agencies/sources. The University has also developed consensus on adoption of Blended Learning with 40% component of online teaching and 60% face to face classes for each programme.

The revised curricula of various programmes could be devised with concerted efforts of the faculty, Heads of the Departments and Deans of Schools of Study. The draft prepared by each department was discussed in series of discussion sessions conducted at Department, School and the University level. The leadership of the University has been a driving force behind the entire exercise of developing the uniform template and structure for the revised curriculum. The Vice Chancellor of the University conducted series of meetings with Heads and Deans to deliberate upon the vital parameters of the revised curriculum to formulate a uniform template featuring Background, Programme Outcomes, Programme Specific Outcomes, Postgraduate Attributes, Structure of Masters Course, Learning Outcome Index, Semester-wise Courses and Credit Distribution, Course-level Learning Outcomes, Teaching-Learning Process, Blended Learning, Assessment and Evaluation, Keywords, References and Appendices. The experts of various Boards of Studies and School Boards contributed to a large extent in giving the final shape to the revised curriculum of each programme. To ensure the implementation of curricular reforms envisioned in NEP-2020, the University has decided to implement various provisions in a phased manner. Accordingly, the curriculum may be reviewed annually.

Statistics consist of data science that involves resorting, classifying, structuring, organizing, analyzing, and interpreting numerical information. To improve the organizational decision making, statistical analysis and related application are very much important. Recent applications of statistics is data mining, Big data etc. Data Mining is a relatively recent area, but capable of covering the inability to analyze huge data sets from the statistics side. To explore and analyze large data sets data mining is used either automatically or semi automatically allowing the extraction of useful information, patterns, associations or trends.

ii) About the Statistics

Recent archaeological discovery of two ancient cities of Dravidian civilization (i.e. Mohenzo Daro, Harappa), in the Indus valley revealed that about 6000 BC a people of advanced culture were settled in the region. Among other things a set of dice was found indicating their knowledge of gambling or chance. The kings and rulers even in ancient India required certain facts and figures in order to run the country and accordingly they collected information which is now known as statistical information.

According to 'Arthasastra' written by the great Indian economist 'Kautilya' (see Shamasastry 1929, Edwards 1961) a civil service existed and there were departments for accounts, revenue, mines, taxation, agriculture, and trade, etc. There was State owned gambling places which used to take five per cent of the winnings in return for a guarantee that there were no loaded dice. This indicates that some development of the probability theory existed during this period.

In 1860, India faced severe famine and the government had to take stringent steps to save the people from starvation, but the government's problem was the lack of information regarding the exact number of people living in the country and the amount of food required. In order to rectify the situation, the government introduced decennial census in 1872 but subsequently established an adhoc census organisation in 1881.

In 1868 as a part of statistical development in India, an annual volume of Statistical Abstract of British 1ndia was published for the first time. This annual volume which was published regularly

from London was finally transferred to India in 1923. In 1883, the most important development of the statistical set-up in the country took place when, in Calcutta, the All-India Statistical Conference was held, passing numerous resolutions for the future development of statistics in the country.

iii) About the Programme (Nature, extent and aims)

The post Graduate [programme in statistics will impart an advance knowledge basic and applied statistics top the graduate. It will prepare the students for taking up challenging assignments in academia and industry and also empower them with skill and knowledge for generation employment for their own and others. The programme introduce the students an advance development in statistical sciences as well as in the field of other allied sciences by providing them multidisciplinary and inter disciplinary courses. The design of choice based curriculum can each student with analytical and problem solving capabilities. It is designed to bring out the best of the ability of each students allow them to sharpen the scientific temper. The M. Sc Statistics programme is of two year duration which is divided into four semesters. The teaching and learning in the programme will involve theory practicals tutorials and seminar bases classes during the whole programme about 40% syllabus of each course may be delivered by online mode and with a blended teaching learning approach.

The Aims of the programme included

- To inculcate basic and advance knowledge of statistical sciences among students.
- To Provide higher education disciplinary and inter/multi-disciplinary research oriented knowledge to the students to make them lifelong learning.
- To provide a learn skilled and creative pool of graduates who already to take up challenging assignments in different kinds of industries research institutions and academia.

iv) Qualification Descriptors (possible career pathways)

On successful completion of the M.Sc. Statistics Programme, students of the Department are expected to work at different platforms in addition to live productive and meaningful lives. Some of the possible career paths for the postgraduate students may be:

- Indian Statistical Services
- Reserve Bank of India Research Officer
- Statistical Officer in Different Government Agencies
- Statistical Quality Control Officer in Industry
- Business analyst in Corporate Sector
- Data Analyst in Corporate Sector
- Research Scientists in Statistics
- Teaching Profession to enhance and disseminate the statistical knowledge
- Officers in central statistical organization (CSO)

2. PROGRAMME OUTCOMES (POs)

Students enrolled in the Master's Programmes offered by the Departments under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attain important essential skills and abilities:

PO-No.	Component	Outcomes
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained
		during the programme.
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during
		the programme.
PO-3	Critical thinking and	Capable of analyzing the results critically and applying
	Problem-Solving	acquired knowledge to solve the problems.
	abilities	
PO-4	Creativity and	Capable to identify, formulate, investigate and analyze the
	innovation	scientific problems and innovatively to design and create
		products and solutions to real life problems.
PO-5	Research aptitude and	Ability to develop a research aptitude and apply knowledge
	global competency	to find the solution of burning research problems in the
		concerned and associated fields at global level.
PO-6	Holistic and	Ability to gain knowledge with the holistic and
	multidisciplinary	multidisciplinary approach across the fields.
	education	
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary skills
		and advanced techniques and apply them for betterment of
		mankind.
PO-8	Leadership and	Ability to learn and work in a group and capable of leading
	Teamwork abilities	a team even.
PO-9	Environmental and	Learn important aspects associated with environmental and
	human health	human health. Ability to develop eco-friendly technologies.
	awareness	
PO-10	_	Inculcate the professional and ethical attitude and ability to
	social awareness	relate with social problems.
PO-11	lifelong learning	Ability to learn lifelong learning skills which are important
	skills and	to provide better opportunities and improve quality of life.
	Entrepreneurship	Capable to establish independent startup/innovation center
		etc.

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

The post graduates shall be able to realise the following outcomes by the end of program studies:

Number	Programme Specific Outcomes
PSO-1	Will have a strong foundation in theoretical concepts of Statistics.
PSO-2	Will be able to apply practical concepts of Statistics for solving real life
	problems.
PSO-3	Will be able to get comprehensive knowledge and understanding of basic
	concepts in statistics and its linkages with humanities, social sciences and life
	sciences.
PSO-4	Will have basic and advance knowledge of computational statistical techniques
	as required for employment in government sector and corporate world.
PSO-5	Will identify interdisciplinary applications of Statistics for enhancing career
	prospects in different fields and research areas.
PSO-6	Will be able to transform the existing statistical knowledge effectively for the
	development of new statistical ideas and concepts.
PSO-7	Will be able to analyze, interpret and present the data and bring out the meaning,
	correlations and interrelationships.
PSO-8	Will be able to use scientific approaches to develop the domain of human
	knowledge through the use of empirical data expressed in quantitative form.

4. Postgraduate Attributes

On completion of the post graduate programme in statistics, students are expected to equip with the skills of creative, critical and rational thinking associated with statistics and its use for human society. The following attributes are expected from the students of M.Sc. Statistics:

No.	P.G. Attributes
PGA-1	Disciplinary Knowledge
PGA-2	Creative and Critical Thinking
PGA-3	Reflective Thinking
PGA-4	Problem Solving
PGA-5	Analytical Reasoning
PGA-6	Communication Skills
PGA-7	Research Skills
PGA-8	Life Skills
PGA-9	Life-long Learning
PGA-10	Global Competency

5. Structure of Masters Course

Types of Courses	Nature	Total	%
		Credits	
Core Courses (CC)	Compulsory	72	75
Elective Courses (EC)	Discipline Centric Elective Courses	16	16.7
	Generic Elective Courses	8	8.3
Skilled-based courses/	Skill Enhancement Courses	4	Nil
Self-study based courses			

6. Learning Outcome Index (Mapping of Courses with POs and PSOs)

<u>6.1 A Mapping of Courses with POs (first year)</u>

	POs	PO	PO1	PO1								
Semeste	⇒	1	2	3	4	5	6	7	8	9	0	1
r	Course											
	No. I											
	CC-1	✓	√	✓	✓		√		✓		✓	√
	CC-2	✓	√	✓	✓	√	✓		✓		√	√
I	CC-3	√	√	√	√	√	√		√		√	✓
•	CC-4	✓	✓	✓	✓	√	√		✓		√	✓
	CC-5	√		✓	√			√	√		√	√
	GEC-1	√		√	√		√	√	√		√	√
	GEC-2	✓		✓	✓		√	√	✓		√	√
	CC-6	✓	√	✓	✓	√	√		✓	✓	√	√
	CC-7	√	√	✓	√	√	√		√	√	√	√
II	CC-8	✓	√	✓	✓	√	√		✓	✓	√	√
1	CC-9	√	√	✓	√	√	√	√	✓	√	√	√
	DCEC -1	√										
	DCEC -2	√	✓									
	GEC-3	✓		√	√		√	√	√	√	✓	√
	GEC-4	√		√	✓		√	√	✓	√	√	✓

6.1B Mapping of Courses with POs (second year)

	POs	PO	PO1	PO1								
Semeste	⇒	1	2	3	4	5	6	7	8	9	0	1
r	Course											
	No. I											
	CC-10	√	✓	√	√	✓		√		√	√	√
	CC-11	✓	√	√	√	√	√		✓	√		✓
III	CC-12	✓	√	✓	✓	√		√	√	√	√	✓
	CC-13	✓	✓	✓			✓	✓	✓	✓	✓	
	CC-14	√		✓	✓	√	√		✓	√	√	✓
	DCEC	√	✓	√	√	√		√	✓		√	√
	-3											
	DCEC -4	✓	✓	✓		√	√	✓	✓		✓	✓
	CC-15	√		√	√	√						
	DCEC	√	√	√	√	√		√		√	✓	
IV	-5											
	DCEC	✓	✓	✓	✓	✓	✓		✓	✓		✓
	-6											
	DCEC	✓	✓	✓	✓		✓	✓	✓	√		✓
	-7											
	DCEC -8	√	√	✓	✓	√		√	√		√	√

6.2A Mapping of Courses with PSOs (first year)

	PSOs ⇒	PSO-							
Semester		1	2	3	4	5	6	7	8
	Course								
	No. I								
	CC-1	√	√		√	✓	√		✓
	CC-2	√							
I	CC-3	√							
1	CC-4	√							
	CC-5		√	√	√	✓	√	√	✓
	GEC-1	√	√	√		√	√	√	√
	GEC-2	√	✓	√		√	√	√	√
	CC-6	√	√	✓	√	√	√	√	√
	CC-7	√	√	√	√	✓	√	√	✓
II	CC-8	√							
11	CC-9		√						
	DCEC-1	√							
	DCEC-2	√	√	√	√	√	√		√
	GEC-3	√	√	√		√	√	√	√
	GEC-4	✓	√	√		√	√	√	√

6.2B Mapping of Courses with PSOs (second year)

	PSOs ⇒	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
Semester	Course								
	No. I								
	CC-10	√							
III	CC-11	√							
	CC-12	√							
	CC-13	√	√	√	√	✓	√	√	√
	CC-14		√	✓		√	√	√	√
	DCEC-3	√	√	√	√		√	√	√
	DCEC-4	√	√		√	√	√	√	√
	CC-15	✓	√	✓	✓	✓	√	√	√
	DCEC-5	✓	√	✓	√	✓	√	√	√
IV	DCEC-6	√	√	√	√	√		√	√
1 4	DCEC-7	√							
	DCEC-8	√	√	√	√	√	√		√

7. Semester-wise Courses and Credit Distribution

		SEMESTER-I (24-Credits)					
Sr. No.	Course Code and	Course Title	L	T	P	Hrs/	Total
	Course No					Week	Credits
Core Co	urses (compulsory)			1			
CC-1	SBS ST 01 101 C	Analysis and Linear Algebra	3	1	0	4	4
	3104						
CC-2	SBS ST 01 102 C	Probability Theory	3	1	0	4	4
	3104						
CC-3	SBS ST 01 103 C	Distribution Theory	3	1	0	4	4
	3104						
CC-4	SBS ST 01 104 C	Sampling Techniques	3	1	0	4	4
	3104						
CC-5	SBS ST 01 105 C	Practical	0	0	4	8	4
	0044						
Generic	Elective Courses (for	r students of other Departments	S****	•)		<u> </u>	
GEC-1	SBS ST 01 101	Introductory Statistics	3	1	0	4	4
	GE 3104						
GEC-2	SBS ST 01 102	Operations Research	3	1	0	4	4
	GE 3104						
	•	SEMESTER-II (24-Credits)	•	•			
Sr. No.	Course Code and	Course Title	L	T	P	Hrs/	Total
	Course No					Week	Credits
Core Co	urses (compulsory)						
CC-6	SBS ST 01 201 C	Statistical Inference – I	3	1	0	4	4
	3104						
CC-7	SBS ST 01 202 C	Regression Analysis	3	1	0	4	4
	3104						
CC-8	SBS ST 01 203 C	Design of Experiments	3	1	0	4	4
	3104						
CC-9	SBS ST 01 204 C	Practical	0	0	4	8	4
	0044						
Disciplin		courses (any two depending on i	ntere	est i	n sp	ecializa	L tion)
Disciplin DCEC-		Courses (any two depending on i	intere 3	est in	n sp	ecializa	tion) 4
	ne Specific Elective C			est in			
DCEC-	ne Specific Elective C	Time Series and Statistical		2 1 1 1 1			
DCEC-	SBS ST 01 201 DCE 3104	Time Series and Statistical Quality Control	3	1	0	4	4
DCEC- 1 DCEC- 2	ne Specific Elective C SBS ST 01 201 DCE 3104 SBS ST 01 202 DCE 3104	Time Series and Statistical Quality Control	3	1	0	4	4
DCEC- 1 DCEC- 2	ne Specific Elective C SBS ST 01 201 DCE 3104 SBS ST 01 202 DCE 3104	Time Series and Statistical Quality Control Operations Research	3	1	0	4	4

GEC-4	SBS ST 01 202	Statistical Methods		1	0	4	4				
	GE 3104										
SEMESTER-III (24-Credits)											
Sr. No.	Course Code and	Course Title	L	T	P	Hrs/	Total				
	Course No					Week	Credits				
Core Cor	urses (compulsory)										
CC-10	SBS ST 01 301 C	Multivariate Analysis	3	1	0	4	4				
	3104										
CC-11	SBS ST 01 302 C	Statistical Inference – II	3	1	0	4	4				
	3104										
CC-12	SBS ST 01 303 C	Econometrics	3	1	0	4	4				
	3104										
CC-13	SBS ST 01 304 C	Seminar	4	0	0	4	4				
	4004										
CC-14	SBS ST 01 305 C	Practical	0	0	4	8	4				
	0044										
Discipline Specific Elective Courses (any two depending on interest in specialization)											
DCEC-	SBS ST 01 301	Stochastic Processes	3	1	0	4	4				
3	DCE 3104										
DCEC-	SBS ST 01 302	Demography and Vital	3	1	0	4	4				
4	DCE 3104	Statistics									
		SEMESTER-IV (24-Credits	s)								
Sr. No.	Course Code and	Course Title	L	T	P	Hrs/	Total				
	Course No					Week	Credits				
Core Cor	urses (compulsory)		•								
CC-15	SBS ST 01 401	Minor Project/Dissertation	-	-	-	-	16				
	PROJ 00016										
Disciplin	e Centric Elective C	ourses (any two depending on	intere	st ii	ı sp	ecializat	ion)				
DCEC-	SBS ST 01 401	Order Statistics	3	1	0	4	4				
5	DCE 3104										
DCEC-	SBS ST 01 402	Committee 1 Ameliania	3	1	0	4	4				
6	DCE 3104	Survival Analysis									
DCEC-	SBS ST 01 403	Decision Theory and	3	1	0	4	4				
7	DCE 3104	Sequential Analysis									
DCEC-	SBS ST 01 404	Statistical Comment	3	1	0	4	4				
8	DCE 3104	Statistical Computing									
	I.	OR		I	1	<u>I</u>					
CC-15	SBS ST 01 401	Major Project/Dissertation	-	-	-	-	24				
	PROJ 00024										

8. Course-Level Learning Outcomes

Course Structure

Course	Course Name:				Course Code:					
No:	Analysis and Linea	ır Algebra			SBS ST 01 101 C 3104					
CC1										
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per			
							Week: 4			
2021-2023	M.Sc. Statistics	I	3	1	0	4	Total Hours: 60			
Total Evalu	lation Marks: 100	.			0.11					
	Marks	Examination	on Duration	n:	3 H	ours				
	Marks	Pre-requisite of course: Fundamental theorems of differential and								
TEE. 70	Marks	integral calculus, Riemann Integration, matrices and their types,								
		inverse of a matrix, operations with matrices (addition,								
		subtractions, multiplication, transpose).								
Course	This course provide						vergence and its			
Objective	mathematical form	-				-	_			
a signature							the major statistics			
	courses.	anary 515 ana	imear arge	oru unu	then pro	per tres in t	ine major statistics			
Course	After completing the	nic cource etc	ident is evr	ected to	loorn the	following				
	1 0		•			· ·	franctions			
Outcomes:	CO1: Understand	_	-			reai vaiued	functions.			
	CO2: Study the co			_						
	CO3: Understand	the rank of a	matrix, cha	racteristi	ic roots &	vectors of	a matrix, properties			
	of symmetric mat	rices.								
	CO4: Understand	the concepts of	of vector sp	ace and	subspaces					
	I .	COI	URSE SYL	LABUS						

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each Unit
I	Recap of elements of set theory, introduction to real numbers,	15
	open and closed intervals (rectangles), compact sets, Bolzano-	
	Weirstrass theorem. Sequences and series, their convergence,	
	real valued functions, continuous functions.	
II	Uniform continuity, Uniform convergence. Maxima-minima	15
	of functions. Complex numbers, analytic function, Cauchy	
	fundamental theorem, Cauchy integral theorem, contour	
	integrations.	
III	Determinant and trace, rank, ranks of product of two matrices,	15
	elementary matrices and Echelon forms. Partitioned matrices:	

	addition, multiplication and inverse. Cayley Hamilton
	Theorem, diagonalization, generalized inverse: Definition and
	its computation.
IV	Definite and semi definite quadratic forms, index and 15
	signatures, simultaneous diagonalization of symmetric
	matrices (equivalent quadratic forms). Vector spaces, sub-
	spaces, linearly dependence and independence,
	orthogonalization process, orthonormal basis.

Suggested Readings:

- 1. Bartle, R.G. & Sherbert, D.R. (2011). Introduction to Real Analysis, 4th Edition. Wiley.
- 2. Saff, E.B. & Snider, A.D. (2014). Fundamentals of Complex Analysis with Applications to Engineering, Science and Mathematics, 3rd Edition. Pearson.
- 3. Rudin, W. (2013). Principles of Mathematical Analysis, 3rd Edition. McGraw Hill.
- 4. Biswas, S. (2012). A Textbook of Matrix Algebra, 3rd Edition. PHI Learning.

Course	Course Name:				Course Code:			
No:	Probability Theory				SBS ST 01 102 C 3104			
CC-2								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	I	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks: 100	Examination	on Duration	n:	3 ho	ours		
CIE: 30	Marks							
TEE: 70	TEE: 70 Marks Pre-requisite of course:							
Course	This course will la	the foundat	ion of proba	ability th	eory and	statistical m	odelling of	
Objective	outcomes of real-li		•	•	•		<u> </u>	
Course	After completing th		-				iloutions.	
			-			_	. 11 1	
Outcomes:	CO1: Understand	the concepts	of random v	ariables	, sigma-fi	elds genera	ted by random	
	variables.							
	CO2: Learn probal	oility distribu	itions and ir	ndepende	ence of rai	ndom varial	oles related to	
	measurable	functions.						
	CO3: Gain the abil	ity to unders	tand the cor	ncepts of	different	types of ge	nerating function.	
		•		-		• 1		
	sequence of random variables, convergence, modes of convergence of sequence of							
		random variables. CO4: Learn the concepts of weak and strong laws of large numbers, and central limit						
		concepts of w	eak and str	ong laws	s of large	numbers, ar	nd central limit	
	theorem.							
COLIDGE CVI I ADIIC								

COURSE SYLLABUS

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each Unit
I	Classes of sets, field, sigma field, minimal sigma field, Borel	15
	field, sequence of sets, limits of a sequence of sets, measure,	
	probability measure, Integration with respect to measure.	
	Random experiment, outcomes, sample space, events, various	
	definitions of probability, laws of total and compound	
	probability. Boole's inequality. Conditional probability,	
	independence of events. Bayes Theorem.	
II	Random variable, probability mass function, probability	15
	density function, cumulative distribution function.	
	Expectation of a random variable, properties of expectation	
	Bivariate distributions and the joint probability distribution.	
	Independence of random variables. Marginal and conditional	
	distributions. Conditional expectation and its properties.	

III	Moment generating function, probability generating function, cumulant generating function, characteristic function and their properties. Inversion, continuity and uniqueness theorems.	15
IV	Convergence in probability, almost sure convergence, convergence in distribution and their relationships. Chebyshev's inequality, weak law of large numbers (WLLN), strong law of large numbers (SLLN), central limit theorems.	15

Suggested Readings:

- 1. Rohatgi V.K. & Saleh A.K. Md.E. (2015). An Introduction to Probability and Statistics, 3rd Edition. Wiley.
- 2. Rao, B.L.S.P. (2010): A First Course in Probability and Statistics. World Scientific.
- 3. Hogg, R.V., McKean, J. & Craig, A.T. (2013). Introduction to Mathematical Statistics, 7th Edition. Pearson.
- 4. Mukhopadhyay, P. (2015). Mathematical Statistics. New Central Book Agency.

Course	Course Name: Distribution Theory			Course Code:				
No:				SBS ST 01 103 C 3104				
CC-3								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics		3	1	0	4	Total Hours: 60	
		I						
Total Evalu	ation Marks: 100	Examination	n Duratio	n:	3 ho	ours		
CIE: 30	Marks							
TEE: 70	Marks	Pre-requisi	te of cours	se: Prob	ability theory, Probability space.			
Course	The main objective	of the course	e is to prov	ide the de	etailed kno	owledge of	the characterization	
Objective	of all the useful dis	crete and con	itinuous di	stributior	ıs.			
Course	After completing the	nis course, stu	ident is exp	pected to	learn the	following:		
Outcomes:	CO1: Formulate the	ne mathemati	cal and sta	tistical m	odels for	real data se	ets arising in various	
	fields in ord	er to analyze	in respect o	of various	s useful cl	naracteristic	es of the populations.	
	CO2: Understand	how to use un	ivariate di	stribution	is in real l	ife problem	is.	
	CO3: Understand central and Non-central χ^2 , t and F distributions.							
	CO4: Work with b	ivariate norm	al and mult	tivariate 1	normal dis	stribution, w	hich is a challenging	
	problem in today's life.							
	COURSE SYLLABUS							

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each Unit
I	Bernoulli, Binomial, Poisson, Geometric, Negative Binomial,	15
	Multinomial, Hypergeometric and discrete uniform	
	distributions; their means, medians, modes, variances,	
	moment generating functions, cumulant generating function,	
	probability generating functions and characteristic functions,	
	important properties with their proofs related to these	
	distributions.	
II	Continuous uniform, Exponential, Gamma, Normal, Beta,	15
	Cauchy, Laplace, Weibull, Pareto and lognormal with their	
	properties including proofs; their means, medians, modes	
	variances, moment generating functions, cumulant	
	generating function and characteristic functions. Concept of	
	family of distributions with examples, reproductive	

	property of a family of distributions. Fitting of normal,	
	binomial and Poisson distributions to real life data.	
III	Compound, truncated and mixture distributions. Central and	15
	Non-central Chi-square (χ^2), t and F distributions with their	
	properties including their means, variances, moment	
	generating functions, cumulant generating function and	
	characteristic functions. Multidimensional random variables,	
	its pdf/pmf and cdf.	
IV	Bivariate normal distribution with its applications and	15
	important properties including their means, variances,	
	covariance and joint moment generating function,	
	Multivariate normal distribution, its marginal and conditional	
	distributions and related properties.	

Suggested Readings:

- 1. Krishnamoorthy, K. (2015). Handbook of Statistical Distributions with Applications, 2nd Edition. CRC Press.
- 2. Rohatgi V.K. & Saleh A.K. Md.E. (2015). An Introduction to Probability and Statistics, 3rd Edition. Wiley.
- 3. Goon, A.M., Gupta, M.K. & Dasgupta, B. (2016). Fundamentals of Statistics, Vol. I. World Press.
- 4. Forbes, C., Evans, M., Hastings, N. & Peacock, B. (2010). Statistical Distributions, 4th Edition. Wiley.

Course	Course Name: Sampling Techniques			Course Code: SBS ST 01 104 C 3104			
No:							
CC-4							
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per
							Week: 4
2021-2023	M.Sc. Statistics	I	3	1	0	4	Total Hours: 60
Total Evalu	ation Marks: 100	Examination	on Duratio	n:	3 hou	ırs	
CIE: 30	CIE: 30 Marks Pre-requisite of course: Probability theory, population, par			lation, parameter,			
TEE: 70	Marks	estimator.	mator.				
Course	The objective of th	is course is to	acquaint t	he studer	nts about: (i) the need &	& merits of sampling
Objective	over census and (ii	i) the implem	entation of	various	sampling so	chemes alo	ng with their merits,
	demerits and comp	parisons in ap	propriate p	ractical s	situations.		
Course	After completing t	his course, st	udent is ex	pected to	learn the f	ollowing:	
Outcomes:	CO1: Learn the ba	sic concepts	of populati	on and s	ample or th	e basic con	cepts of survey.
	CO2: Learn the principles of sample survey and the steps involved in selecting a sample.					ecting a sample.	
	CO3: Understand the distinctive features of different sampling techniques and their related						
	estimation problems.						
	CO4: Learn the pra	actical applic	ations of th	e various	sampling t	echniques i	n real life situations.

COURSE SYLLABUS

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Introduction to sampling, concept of population and sample, census and	15
	sample surveys, sampling and non-sampling errors. Types of sampling,	
	non-probability sampling, probability sampling, basic principles of	
	sample surveys. Simple random sampling, sampling from finite	
	populations with and without replacement, unbiased estimation and	
	confidence intervals for population mean and total, simple random	
	sampling of attributes.	
II	Stratified sampling, reasons for stratification, choice of strata, choice of	15
	sampling unit, estimation of population mean and its variance, choice of	
	sample sizes in different strata, variances of estimates with different	
	allocation, effects of deviation from optimum allocations, estimation of	
	the gain in precision due to stratification, cost function, construction of	
	strata. Systematic Sampling: merits and demerits of systematic sampling,	
	estimation of sample mean and its variance, comparison of systematic	
	sampling with simple random and stratified sampling.	
III	Ratio and regression methods of estimation, variances of the estimates,	15
	optimum property of ratio estimates, comparison among ratio, regression	

	and simple random sampling estimates, ratio estimate in stratified	
	sampling, comparison with the ratio and mean per unit. Cluster	
	Sampling, estimates of mean and its variance for equal and unequal	
	clusters, efficiency in terms of intraclass correlation, optimum unit of	
	sampling, sampling with replacement, estimation of mean and its	
	variance.	
IV	Sampling with varying probabilities with and without replacement,	15
	sampling with probability proportional to size, Lahiri's method of	
	selection, Horvitz-Thompson estimator, its variance and unbiased	
	estimate of this variance. Introduction of multistage sampling, two stage	
	sampling with equal first stage units, estimation of its mean and variance,	
	introduction of multiphase sampling, double sampling for ratio and	
	regression methods of estimation.	

Suggested Readings

- 1. Singh, D. & Chaudhary, F.S. (2016). Theory and Analysis of Sample Survey Designs. New Age International Publishers.
- 2. Arnab, R. (2017). Survey Sampling Theory and Applications. Academic Press.
- 3. Sukhatme, P.V., Sukhatme, B.V., Sukhatme, S. & Ashok, C. (2014). Sampling Theory of Surveys with Applications. New Delhi: Piyush Publications.
- 4. Cocharn, W.G. (2007). Sampling Techniques, 3rd Edition. Wiley.

Course	Course Name: PRACTICAL				Course Code:				
No:					SBS ST 01 105 C 0044				
CC-5									
Batch:	Programme:	Programme: Semester: L T				Credits	Contact Hrs per		
							Week: 8		
2021-2023	M.Sc. Statistics	I	0	0	4	4	Total Hours: 120		
Total Evalu	ation Marks:	Examination Duration: 3 hours							
	Marks	Pre-requisite of course: Theoretical knowledge of all courses studied in this semester							
	Marks			70 (0	ons in the analysis of real life data using				
Course			_	_		malysis of i	real life data using		
Objective	the concepts of th	e courses stu	ıdied in th	is semes	ter				
Course	The students will	be able to							
Outcomes:	CO1: Fit a distril	oution to rea	l life data	obtained	l in a rand	om experir	nent		
	CO2: Draw a random sample from a population using appropriate sampling scheme and								
	finding the estimators of population parameters.								
	CO3: Find optimal sample size from strata in stratified sampling								
	COURSE SYLLABUS								

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Content of Each Unit	Hours
Practicals based on Distribution Theory (SBS ST 01 103 C 3104) and Sampling	120
Techniques (SBS ST 01 104 C 3104).	

Course	Course Name:	Course Name:					Course Code:		
No:	Introductory Statist			SBS ST 01 101 GE 3104					
GEC-1									
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per		
							Week: 4		
2021-2023	M.Sc. Statistics	I	3	1	0	4	Total Hours: 60		
	ation Marks: 100	Examination	on Duration	n:	3 ho	ours			
	Marks	Pro-reguisi	to of cours	a. Diffai	·ontistion	and Integ	ration discrete and		
TEE: 70	Marks	Pre-requisite of course: Differentiation and Integration, discrete and continuous functions.							
Course	The objective of th	is course is to	define a v	ariety of	basic stati	stical terms	s and concepts,		
Objective	solve fundamental	statistical pro	blems, und	erstandiı	ng of statis	stical funda	mentals to interpret		
	data.								
Course	After completing th	nis course, stu	ıdent will b	e able to	:				
Outcomes:	CO1: Compute me	asures of cen	tral tendenc	y, disper	sion, skew	ness and k	urtosis from the data.		
	CO2: Identify the r	andom exper	iments and	the unde	erlying ran	dom variab	oles with probability		
	distributions.								
	CO3: Identify the discrete and continuous probability distributions along with their								
	applications.								
	CO4: Apply various tests of hypothesis about hypothetical value of population parameters								
and to draw valid conclusions.									
COURSE SYLLABUS									

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each Unit
I	Introduction to Statistical Analysis, Measures of Central	15
	Tendency: Mean, median, mode, geometric mean, harmonic	
	mean. Measures of Dispersion: range, mean deviation,	
	variance, standard deviation. Quartiles. Quartile deviation,	
	coefficient of variation, measures of skewness, measures of	
	kurtosis.	
II	Random experiment, outcomes, sample space, events,	15
	classical definition of probability, random variables,	
	probability mass function, probability density function,	
	cumulative distribution function, mathematical expectation,	

	Variance, Binomial, Poisson, Geometric, Exponential,	
	Normal distributions.	
III	Null hypothesis, alternative hypothesis, type I error, type II	15
	error, level of significance, p-value and power of test. Tests	
	for mean based on normal distribution – one sample t-test,	
	two-sample t-test, paired-sample t-test. Tests for variance	
	based on normal distribution – one sample and two-sample	
	problem. One-way and Two-way analysis of variance	
	(ANOVA) techniques.	
IV	Karl Pearson's correlation coefficient, Spearman's rank	15
	correlation coefficient, principle of least square, lines of	
	regression, simple linear regression, coefficient of	
	determination. Multiple linear regression, coefficient of	
	multiple determination.	

Suggested Readings:

- 1. Goon, A.M., Gupta, M.K. & Dasgupta, B. (2016). Fundamentals of Statistics, Vol. I & II. World Press.
- 2. Das, N.G. (2012). Statistical Methods, Vol I & II. Tata McGraw Hill.
- 3. Walpole, R.E., Myers, R.H., Myers, S.L. & Ye, K.E (2012). Probability and Statistics for Engineers and Scientists. Pearson.
- 4. Rao, B.L.S.P. (2010): A First Course in Probability and Statistics. World Scientific.

Course	Course Name: OPERATIONS RESEARCH				Course Code: SBS ST 01 102 GE 3104				
No:									
GEC-2									
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per		
							Week: 4		
2021-2023	M.Sc. Statistics	I	3	1	0	4	Total Hours: 60		
Total Evalu	ation Marks:	Examination	on Duratio	n:	3 ho	urs			
100									
CIE: 30	Marks	Pre-requisite of course: Linear algebra, maxima and minima							
EEE 50		principles of calculus.							
	Marks	as of formulating mathematical modeling and their optimum solution in							
Course	-		_		_	-			
Objective	the context of prac	•	•	_					
	students a firm for			l optimiz	ation techn	iques for th	ne solution of the		
	problems covered	in course con	itents.						
Course	On completion of	this course, s	tudents wil	l be able	to:				
Outcomes:	CO1: Identify and	develop oper	rational res	earch mo	odels from	the verbal d	escription of the real		
	system.								
	CO2: Understand the characteristics of different types of decision-making environments and								
	decision-making approaches.								
	CO3: Understand the mathematical tools that are needed to solve optimization problems.								
	CO4: Analyze the inventory situations.								
COURSE SYLLABUS									

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Origin and development of operations research (O.R.), modelling in	15
	O.R., applications of O.R., opportunities and shortcomings of O.R.	
	Formulation of linear programming problem (LPP), graphical solution	
	to LPP, properties of a solution to the LPP, generating extreme point	
	solutions.	

II	The simplex computational procedure, development of minimum	15
	feasible solution, a first feasible solution using slack variables, the	
	artificial basis technique.	
III	Two phase method and Charnes M-method with artificial variables.	15
	The duality problem of linear programming and its economic	
	interpretation, transportation and assignment problems.	
IV	Game theory problem as a linear programming problem, integer	15
	programming. Replacement models and sequencing theory. Inventory	
	management: characteristics of inventory systems. Classification of	
	items. Deterministic inventory systems with and without lead-time.	

Suggested Readings

- 1. Taha, H.A. (2017). Operations Research: An Introduction, 10th Edition. Pearson.
- 2. Gass, S.I. (2010). Linear Programming, Methods and Applications, 5th Edition. Dover Books.
- 3. Gross, D., Shortle, J.F., Thompson, J.M. & Harris, C.M. (2017). Fundamentals of Queueing Theory, 5th Edition. Wiley.
- 4. Water, D. (2013). Inventory Control and Management, 2nd Edition. Wiley.

Course Name:				Course Code:			
Statistical Inference - I				SBS ST 01 201 C 3104			
Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
						Week: 4	
M.Sc. Statistics	II	3	1	0	4	Total Hours: 60	
ation Marks: 100	Examinatio	n Duratio	n:	3 ho	ours		
Marks	Pre-requisite of course:						
Marks							
The objective of est	imation theor	y is to arr	ive at an c	estimator	that exhibi	ts optimality. To	
provide a systemati	c account of I	Neyman P	earson th	eory of te	esting and c	losely related theory	
of point estimation	and confiden	ce sets, tog	ether wit	h their ap	oplications.		
After completing th	is course, stu	dent is exp	ected to	learn the	following:		
CO1: Understand to	he various est	imation an	d testing 1	procedure	es to deal wi	ith real life problems.	
CO2: Learn about the Fisher Information, lower bounds to variance of estimators, MVUE.					stimators, MVUE.		
CO3: Understand the concept of Neyman-Pearson fundamental lemma, UMP test and interval							
estimation.							
CO4: Understand the concept of critical regions, likelihood ratio test with its asymptotic							
distribution.							
	Programme: M.Sc. Statistics Marks: 100 Marks Marks The objective of est provide a systemation After completing the CO1: Understand to CO2: Learn about to estimation. CO3: Understand to estimation. CO4: Understand	Programme: Semester: M.Sc. Statistics II Minimal Marks: 100 Marks Pre-requisite Marks The objective of estimation theory provide a systematic account of a point estimation and confidence After completing this course, sture CO1: Understand the various est CO2: Learn about the Fisher Infection CO3: Understand the concept of estimation. CO4: Understand the concept of distribution.	Programme: Semester: L M.Sc. Statistics II 3 Ation Marks: 100 Examination Duration Marks Pre-requisite of course Marks The objective of estimation theory is to array provide a systematic account of Neyman Performation and confidence sets, togather completing this course, student is expected. CO1: Understand the various estimation and CO2: Learn about the Fisher Information, account of Neyman-Fine estimation. CO3: Understand the concept of Neyman-Fine estimation. CO4: Understand the concept of critical distribution.	Programme: Semester: L T M.Sc. Statistics II 3 1 Marks: 100 Examination Duration: Marks Pre-requisite of course: Marks The objective of estimation theory is to arrive at an exprovide a systematic account of Neyman Pearson the of point estimation and confidence sets, together with After completing this course, student is expected to CO1: Understand the various estimation and testing CO2: Learn about the Fisher Information, lower both CO3: Understand the concept of Neyman-Pearson function. CO4: Understand the concept of critical regions,	Programme: Semester: L T P M.Sc. Statistics II 3 1 0 Marks Pre-requisite of course: Marks The objective of estimation theory is to arrive at an estimator provide a systematic account of Neyman Pearson theory of te of point estimation and confidence sets, together with their appears After completing this course, student is expected to learn the CO1: Understand the various estimation, lower bounds to various content of Neyman Pearson fundament estimation. CO3: Understand the concept of Neyman-Pearson fundament estimation. CO4: Understand the concept of critical regions, likelihood distribution.	Programme: Semester: L T P Credits M.Sc. Statistics II 3 1 0 4 Ation Marks: 100 Examination Duration: 3 hours Marks Pre-requisite of course: Marks The objective of estimation theory is to arrive at an estimator that exhibit provide a systematic account of Neyman Pearson theory of testing and confidence sets, together with their applications. After completing this course, student is expected to learn the following: CO1: Understand the various estimation and testing procedures to deal with CO2: Learn about the Fisher Information, lower bounds to variance of extimation. CO3: Understand the concept of Neyman-Pearson fundamental lemma, Understand the concept of critical regions, likelihood ratio test distribution.	

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each Unit
I	Parameter, and estimator, criteria of a good estimator-	15
	unbiasedness, consistency, efficiency, sufficiency. Minimal	
	sufficient statistic. Exponential and Pitman families of	
	distributions. Cramer-Rao lower bound approach to obtain	
	minimum variance unbiased estimator. Uniformly minimum	
	variance unbiased estimator, Complete statistic, Rao-	
	Blackwell theorem, Lehmann-Scheffe theorem.	
II	Method of moments, minimum chi-square estimation,	15
	maximum likelihood estimator and its properties, CAN &	
	BAN estimators. Ancillary statistic and Basu's theorem.	

	Simple and composite hypothesis, concept of critical regions,	
	test functions, two types of error, power of the test, level of	
	significance, Neyman-Pearson lemma, uniformly most	
	powerful (UMP) tests.	
III	Types A, A1 critical regions, likelihood ratio test (LRT) with	15
	its asymptotic distribution, UMP tests for monotone	
	likelihood ratio family of distributions. Similar tests with	
	Neyman structure, Construction of similar and UMPU tests	
	through Neyman structure.	
IV	Confidence interval, construction of confidence intervals	15
	using pivotal, shortest expected length confidence interval,	
	uniformly most accurate one-sided confidence interval and its	
	relation to UMP test for one sided null against one sided	
	alternative hypothesis.	
1		

Suggested Readings:

- 1. Johnson, R.A. and Wichern, D.W. (2015): Applied Multivariate Statistical Analysis, Sixth Edition, Pearson Education India.
- 2. Hardle, W.K. and Hlavka, Z. (2015): Multivariate Statistics, Springer.
- 3. Anderson, T.W. (2003): An Introduction to Multivariate Statistical Analysis, Third Edition, Wiley.
- 4. Härdle, W.K. and Simar, L. (2015): Applied Multivariate Statistical Analysis, Springer.
- 5. Singh, B.M. (2004): Multivariate statistical analysis, South Asian Publishers.
- 6. Rao, C.R. (2002): Linear Statistical Inference and its applications, Second Edition, Wiley.

Course	Course Name: Regression Analysis				Course Code: SBS ST 01 202 C 3104			
No:								
CC-7								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	II	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks: 100	Examination	n Duratio	n:	3 ho	ours	,	
CIE: 30	30 Marks							
TEE: 70	Marks	Pre-requisite of course: Linear algebra, normal distribution, leas						
		square principle, statistical error.						
Course	The objectives of t	this course are	e to develo	p theoret	tical founda	ation of regi	ression models and	
Objective	understand fundan	nental concep	ts of regre	ssion ana	alysis.			
Course	On completion of	this course, st	udents wil	l be able	to:			
Outcomes:	CO1: Understand	simple and m	ultiple line	ear regre	ssion mode	els with thei	r applications.	
	CO2: Learn the fir	tting of these	models to	simulate	d and real	data sets.		
	CO3: Learn model adequacy using classical diagnostics, awareness of potential problems							
	(outliers, etc.) and application of remedies to deal with them.							
CO4: Understand the basic concepts of logistic, Poisson and generalized linear models.								
	COURSE SYLLABUS							

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Simple Linear Regression: Simple linear regression model. Least-	15
	squares estimation of parameters. Hypothesis testing on the slope and	
	intercept. Interval estimation in simple linear regression. Prediction of	
	new observations. Coefficient of determination. Estimation by maximum	
	likelihood. Multiple linear regression: Multiple linear regression models.	
	Estimation of the model parameters. Hypothesis testing in multiple linear	
	regression. Confidence intervals in multiple regression. Coefficient of	
	determination and Adjusted R ² .	
II	Model Adequacy: Checking of linearity between study and explanatory	15
	variable, Residual Analysis, Detection and treatment of outliers,	
	Residual plots. The PRESS statistic. Outlier test based on Studentized	
	Residual (R-student). Test for lack of fit of the regression model.	
	Transformation and Weighting to Correct Model Inadequacies: Variance	
	stabilizing transformations. Transformations to linearize the model.	

	Analytical methods for selecting a transformation on study variable.	
	Diagnostic for Leverage and Influence: Leverage, measures of influence.	
III	Generalized and weighted least square estimation. Polynomial	15
	Regression Models: Polynomial models in one variable. Orthogonal	
	Polynomials. Piecewise polynomial (Splines). Variable Selection and	
	Model Building: Incorrect model specifications. Evaluation of subset	
	regression model. Computational techniques for variable selection.	
IV	Logistic and Poisson regression models: Introduction, Linear predictor	15
	and link functions, logit, probit, odds ratio, maximum likelihood	
	estimation, test of hypothesis. Generalized linear models: Exponential	
	family of distribution, Linear predictors and link functions, Maximum	
	likelihood estimation of GLM. Prediction and confidence interval with	
	GLM.	

Suggested Readings

- 1. Montegomery, D.C., Peck, E.A. & Vining, G.G. (2015). Introduction to Linear Regression Analysis, 5th Edition. Wiley.
- 2. Rao, C.R. (2009). Linear Statistical Inference and its Applications, 2nd Edition. Wiley.
- 3. Draper, N.R. & Smith, H. (2011). Applied Regression Analysis, 3rd Edition. Wiley.
- 4. Chatterjee, S. and Hadi, A.S. (2012). Regression Analysis by Example, 5th Edition. Wiley.
- 5. Fox, J. and Weisberg, S. (2019). An R Companion to Applied Regression, 3rd Edition. Sage Publications.

Course	Course Name: De	Course Code: SBS ST 01 203 C 3104							
No:									
CC-8									
Batch:	Programme:	amme: Semester: L				Credits	Contact Hrs per		
							Week: 4		
2021-2023	M.Sc. Statistics	II	3	1	0	4	Total Hours: 60		
Total Evalu	nation Marks: 100	Examination Duration: 3 hours							
CIE: 30	Marks	D	24 C			. N. T. 141 . I	. 1*		
		Pre-requisite of course: Linear algebra, Multiple linear regression, normal distribution.							
TEE: 70	Marks	regression	, normai d	istribut	ion.				
Course	To provide orientation of statistics while designing statistical experiments, particularly in								
Objective	agricultural set-up	and in pharm	aceutical pr	oduction	n processe	es. Exposur	e to various		
statistical designs leading to the analysis of variance, eliminating heterogeneity of the da						geneity of the data,			
	construction of des	igns will be p	provided.						
Course	After completing this course, student is expected to learn the following:								
Outcomes:									
	CO1: Understand	the concepts	of design of	experin	nents and	application	of ANOVA,		
	ANCOVA.								
	CO2: Construct co	omplete and p	partially cor	nfounded	l factorial	designs and	d perform their		
	analysis.								
	CO3: Design and a	•	•	lock des	igns, unde	erstand the	concepts of		
	efficiency of BIBD relative to RBD.								
CO4: Understand the concepts of first order, orthogonal and treatment-control designs.									
		CO	URSE SYL	LABUS	}				

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each Unit
I	Introduction to design of experiments. Three basic principles	15
	of design of experiments: randomization, replication and	
	local control. Uniformity trials. Analysis of basic design,	
	asymptotic relative efficiency, missing plot techniques,	
	analysis of covariance for CRD and RBD.	
II	Factorial experiments: 2^k , 3^2 and 3^3 systems only. Complete	15
	and partial confounding, factorial replication in 2^k systems.	

	Two-level fractional factorial designs: introduction, the one-	
	quarter fraction of the 2^k design. Alias structure in fractional	
	factorials and other designs.	
III		15
	Incomplete block design: balanced incomplete block design,	
	simple lattice design, split-plot design, strip-plot design,	
	comparison of two treatments, efficiency of BIBD relative to	
	RBD.	
IV	Response surface methodology, first order designs, and	15
	orthogonal designs, treatment-control designs, model	
	variation and use of transformation.	

Suggested Readings:

- 1. Montgomery, D.C. (2013). Design and Analysis of Experiments, 8th Edition. Wiley.
- 2. Toutenburg, H. & Shalabh (2010). Statistical Analysis of Designed Experiments, 3rd Edition. Springer.
- 3. Cobb, G.W. (2014). Introduction to Design and Analysis of Experiments. Wiley.
- 4. Lawson, J. (2014). Design and Analysis of Experiments with R. CRC Press.

Course	Course Name: Practical 102			Course Code: SBS ST 01 204 C 0044					
No:									
CC-9									
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per		
							Week: 8		
2021-2023	M.Sc. Statistics	II	0	0	4	4	Total Hours: 120		
Total Evalu	ation Marks: 100	Examination	on Duratio	n:	3 ho	urs			
CIE: 30 Marks									
TEE: 70	TEE: 70 Marks		Pre-requisite of course: The theoretical knowledge of all the theory						
			courses taught in this semester						
Course	To apply the theo	retical conc	epts in the	analyse	s of real-lif	e data.			
Objective									
Course	The students will	he canable	to annly t	he statis	tical techn	ianes in es	timation, testing of		
		_				_			
Outcomes:	"			_		-	prediction of target		
	variable. Students will be able to apply appropriate designs in comparative experiments								
COURSE SYLLABUS									

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours				
Practicals based on Statistical Inference - I (SBS ST 01 201 C 3104), Regression 120						
Analysis (SBS ST 01 202 C 3104) and Design of Experiments (SBS ST 01 203 C						
3104).						

Course	Course Name:				Course Code:				
No:	Time Series and Statistical Quality Control				SBS ST 01 201 DCE 3104				
DCEC-1									
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per		
							Week: 4		
2021-2023	M.Sc. Statistics	II	3	1	0	4	Total Hours: 60		
Total Evalu	ation Marks: 100	Examination Duration: 3 hours							
CIE: 30	CIE: 30 Marks								
TEE: 70 Marks		Pre-requisite of course: Area properties of normal distribution,							
		additive and multiplicative models.							
Course	The objective of this course is to equip the students of M.Sc. Statistics with knowledge of						ith knowledge of		
Objective	industrial statistics as well as applications of Time series in real life.								
Course	After completing this course, student is expected to learn the following:								
Outcomes:									
	CO1: Study the components of time series and its use to forecast the future values.								
	CO2: Learn auto covariance and auto-correlation functions.								
	CO3: Study the concept and applications of control charts for variables and attributes.								
CO4: Understand different sampling inspection plans and their applications.									
COURSE SYLLABUS									

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each Unit
I	Time series: objects, decomposition, examples of time series,	15
	trend component, polynomial, logistic, Gompertz, log-normal	
	trend functions, smoothing of moving average, Spencer's	
	formulae and effects, variate difference method, Measurement	
	of seasonal and cyclical functions, Peridogram and harmonic	
	analysis.	
II	Concepts of auto regression, autocorrelation, partial	15
	autocorrelation and correlogram analysis. Linear models for	
	stationary time series. First order moving average (MA(1))	
	process, second order moving average (MA(2)) process. First	
	order autoregressive process (AR(1)), second order	
	autoregressive process (AR(2)). Autoregressive moving	

	average (ARMA) and autoregressive integrated moving	
	average (ARIMA) models.	
III	Concept of quality and meaning of control, Chance and	15
	assignable causes of quality variation, product and process	
	controls. Concept of 3-sigma limits. Modified and	
	specifications limits. Different types of control charts like \bar{X} ,	
	R, np, p and c with their applications in industry.	
IV	Sampling inspection v/s 100% inspection. Single, double,	15
	multiple and sequential sampling plans for attributes.	
	Operating characteristic (OC), AOQL, ASN and ATI curves.	
	Concept of producer's and consumer's risk, AQL and LTPD.	
	Variable sampling plans.	

- 1. Montgomery, D.C., Jennings, C.L. & Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting, 2nd Edition. Wiley.
- 2. Brockwell, P.J. & Davis R.A. (2016). Introduction to Time Series and Forecasting, 2nd Edition. Springer.
- 3. Montgomery, D.C. (2012). Introduction to Statistical Quality Control, 7th Edition. Wiley.
- 4. Grant, E. & Leavenworth, R. (2012). Statistical Quality Control, 7th Edition. Tata McGraw Hill.

Course	Course Name: OPERATIONS RESEARCH				Course Code: SBS ST 01 202 DCE			
No:					3104			
DCEC-2								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	II	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks:	Examination	n Dunatia		3 ho	1		
100		Examinauo	on Durauo	n:	3 not	urs		
CIE: 30	Marks	Pre-requisite of course: Linear algebra, Poisson process. Relation						
		between exponential distribution and Poisson process.						
TEE: 70	Marks							
Course	To provide the ide	as of formula	ting mathe	matical r	nodeling ar	nd their opt	imum solution in	
Objective	the context of prac		•		_	-		
	students a firm fou	-		_			•	
	problems covered			Ι.		1		
Course	On completion of			l be able	to:			
Outcomes:	1	ŕ				he verbal d	escription of the real	
	CO1: Identify and develop operational research models from the verbal description of the real system.							
	CO2: Understand the characteristics of different types of decision-making environments and							
	decision-making approaches.							
			tical tools t	hat are n	needed to so	olve ontimiz	zation problems	
	CO3: Understand the mathematical tools that are needed to solve optimization problems. CO4: Analyze the inventory and queueing models.							
	COLIDSE SVI LABIS							

NOTE:

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Origin and development of operations research (O.R.), modelling in	15
	O.R., applications of O.R., opportunities and shortcomings of O.R.	
	Formulation of linear programming problem (LPP), graphical solution	
	to LPP, properties of a solution to the LPP, generating extreme point	
	solutions.	
II	The simplex computational procedure, development of minimum	15
	feasible solution, a first feasible solution using slack variables, the	

	artificial basis technique. Two phase method and Charnes M-method	
	with artificial variables. The duality problem of linear programming	
	and its economic interpretation, transportation and assignment	
	problems.	
III	Inventory management: characteristics of inventory systems.	15
	Classification of items. Deterministic inventory systems with and	
	without lead-time. All unit and incremental discounts. Single period	
	stochastic models.	
IV	Queueing Theory: Introduction of the queuing system, Various	15
	components of a queueing system. Pure Birth Process; Pure Death	
	Process, Birth and Death Process, M/M/1, M/M/1 (Generalized),	
	M/M/1/FCFS/K/∞, M/M/C, Erlang's loss model.	

- 1. Taha, H.A. (2017). Operations Research: An Introduction, 10th Edition. Pearson.
- 2. Gass, S.I. (2010). Linear Programming, Methods and Applications, 5th Edition. Dover Books.
- 3. Gross, D., Shortle, J.F., Thompson, J.M. & Harris, C.M. (2017). Fundamentals of Queueing Theory, 5th Edition. Wiley.
- 4. Water, D. (2013). Inventory Control and Management, 2nd Edition. Wiley.

Course	Course Name: Applied Statistics-I				Course	Code: SBS	S ST 01 201 GE	
No:					3104			
GEC-3								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	II	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks: 100	Examination	on Duration	n:	3 Ho	ours		
CIE: 30	Marks							
TEE: 70	Marks	Pre-requisite of course: Time series data, Area property of						
		Gaussian distribution.						
Course	The course aims to	study variou	s models ar	nd compo	onents of t	ime series	analysis for	
Objective	forecasting purpose	es and variou	s methods t	o control	the quali	ty of a prod	luct. It also gives the	
	study of distributio	n of populati	on with resp	pect to bi	rth, migra	tion, aging	and death.	
Course	After completing th	nis course, st	udent is exp	ected to	learn the f	following:		
Outcomes:								
	CO1: Study the co	mponents of	time series	and their	measurer	ment.		
	CO2: Study process control and its tools-control chart for variables and attributes.							
	CO3: Learn the basic measures of mortality and fertility and their application.							
	CO4: Understand	life tables and	d their uses	in real li	fe problen	ns.		
	COURSE SYLLABUS							

COURSE SYLLABO

NOTE:

Unit No.	Content of Each Unit	Hours of Each Unit
I	Time Series: Components of time series, Decomposition of	15
	time series- Additive and multiplicative model with their	
	merits and demerits, Illustrations of time series, measurement	
	of trend by method of moving averages, method of semi-	
	averages and method of least squares (linear, quadratic and	
	exponential). Measurement of seasonal variations by method	
	of simple averages, method of ratio to trend.	
II	Statistical Quality Control: Importance of statistical methods	15
	in industrial research and practice, determination of tolerance	
	limits, causes of variations in quality: chance and assignable.	
	General theory of control charts, process and product control,	
	control charts for variables: X- bar and R-charts, control charts	
	for attributes: p and c-charts.	

III	Demographic Methods: Introduction, measurement of population, rates and ratios of vital events, measurement of mortality: Crude Death Rate, Specific Death Rate (w. r. t. age and sex), Infant Mortality Rate, Standardized death rates.	15
IV	Life (mortality) tables: definition of its main functions and uses, measurement of fertility and reproduction: Crude Birth Rate, General Fertility Rate and Total Fertility Rate. Measurement of population growth: Gross Reproductive Rate, Net Reproductive Rate.	15

- 1. Mukhopadhyay, P. (2011). Applied Statistics, 2nd Edition. Books and Allied (P.) Ltd.
- 2. Goon, A.M., Gupta, M.K. & Dasgupta, B. (2016). Fundamentals of Statistics, Vol. II. 9th Edition. World Press.
- 3. Montegomery, D.C. (2013). Statistical Quality Control: A Modern Introduction, 7th Edition. Wiley.
- **4.** Burr, J.T. (2014). Elementary Statistical Quality Control, 2nd Edition. CRC Press.

Course	Course Name: Statistical Methods				Course (Code: SBS	ST 01 202 GE 3104		
No:									
GEC-4									
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per		
							Week: 4		
2021-2023	M.Sc. Statistics	II	3	1	0	4	Total Hours: 60		
Total Evalu	ation Marks:	Examination	on Duratio	n:	3 ho	ours			
100									
CIE: 30	Marks	Pre-requisite of course: Quantitative techniques/elementary statistical							
		methods.							
TEE: 70	Marks								
Course	The objective of	this course	is to def	ine a v	ariety of	data types,	representation and		
Objective	interpretation of c	lata, sampling	g technique	es and d	esign of e	xperiments.	To familiarize the		
	students about th	e hypotheses	s testing p	oblem i	n normal s	setting.			
Course	After completing t	his course, st	udent is ex	pected to	learn the	following:			
Outcomes:									
	CO1: able to learn	about differe	ent types of	data &	scales also	tabulated re	epresentation of data.		
	CO2: understand	how to repres	sent data gr	aphically	y.				
		n how to co	llect samp	les and a	analyze the	em by using	g different sampling		
	techniques.								
	CO4: understand	•	· ·	-					
	-			pothesis	for paran	neters of no	ormal distribution (
	one and two sam	ple problems	s)						

NOTE:

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Statistical Data, Types of Data: attributes and variables, discrete &	15
	continuous data, Primary data, Secondary data, Different types of	
	scales- nominal, ordinal, ratio and interval. Presentation of data:	
	Construction of tables with one or more factors of classification.	
II	Diagrammatic and graphical representation of data: Pictorial	15
	representation, Bar chart, Pie Chart, histogram, frequency polygon,	

	frequency curve and ogives. Stem and leaf chart. Box Plot Central						
	tendency and its measures: Mean, Median and Mode						
III	Concepts of population, parameter, sample and estimator, census and	15					
	sample surveys, Basic concepts in sampling and designing of a large						
	scale surveys, steps involved in sample survey. Simple random						
	sampling with and without replacement; Idea of Stratified sampling						
	and Systematic sampling.						
	Normal, binomial and Poisson distributions with applications. Null						
	and alternative hypothesis, Type-I and Type II errors, steps						
	involved in a test of significance, p-value, testing hypothetical value						
	of parameters of normal distribution (one sample and two sample						
	problems)						
IV	Experimental designs: Terminology, experimental error, basic	15					
	principles, uniformity trials, fertility contour maps, choice of size and						
	shape of plots and blocks. Basic designs: Completely Randomized						
	Design (CRD), Randomized Block Design (RBD), Latin Square Design						
	(LSD) – layout, model and statistical analysis.						

- 1. Goon, A.M., Gupta, M.K. & Dasgupta, B. (2016). Fundamentals of Statistics, Vol. I & II. World Press.
- 2. Das, N.G. (2012). Statistical Methods, Vol I & II. Tata McGraw Hill.
- 3. Daniel, W.W. & Cross, C.L. (2012). Biostatistics: A Foundation for Analysis in the Health Sciences, 10th Edition. Wiley.
- 4. Montgomery, D. C. (2008): Design and Analysis of Experiments, John Wiley.

Course	Course Name:	Course Code: SBS ST 01 301 C 3104								
No:	Multivariate Ana									
CC-10										
Batch:	Programme:	Semester:	L	Т	P	Credits	Contact Hours per Week: 4			
2021-2023	M.Sc. Statistics	III	3	1	0	4	Total Hours: 60			
Total Evalu	nation Marks: 100	Examination	on Duratio	on:	3 h	ours				
CIE: 30	Marks	Pre-requisite of course: Linear algebra, dependent variables,								
TEE: 70				bivariate normal distribution.						
Course	The main objective	of this cours	e is to intro	oduce stud	dents to ti	he analysis	of observations on			
Objective	several correlated	random varia	bles for a	number o	f individu	als. Multiv	ariate analysis is			
	applicable in almo	st all scientifi	c studies, j	for examp	le in Anth	hropology, I	Life sciences,			
	machine learning,	Agriculture a	nd Econor	nics, when	n one dea	ls with seve	eral variables			
	simultaneously.									
Course	After completing t	his course, stu	ident is ex	pected to	learn the	following:				
Outcomes:	CO1: Account for important theorems and concepts in multivariate analysis.									
	CO2: Understand	the concept of	f Wishart a	and Hotell	ling's T^2	distributio	n.			
	CO3: Understand the link between multivariate techniques and corresponding univariate techniques.									
	-	ntistical infere	ence about	multivar	iate meai	ns including	g hypothesis testing,			
		region calcula				•				
COURSE SVI I ARIIS										

NOTE:

Unit No.	Content of Each Unit	Hours of Each Unit
I	Multivariate normal distribution, its properties and	15
	characterization. Random sampling from a multivariate	
	normal distribution. Maximum likelihood estimators of	
	parameters. Distribution of sample mean vector. Inference	
	concerning the mean vector when the covariance matrix is	

	known. Matrix normal distribution. Multivariate central limit	
	theorem.	
II	Wishart matrix, its distribution and properties. Distribution of	15
	sample generalized variance. Hotelling's T^2 statistic and its	
	distribution and properties. Applications in tests on mean	
	vector for one and more multivariate normal populations.	
	Mahalanobis' D^2 .	
III	[Course Outcome (s) No.: CO3]	15
	Likelihood ratio test criteria for testing of independence of sets	
	of variables, equality of covariance matrices, identity of	
	several multivariate normal populations, equality of a	
	covariance matrix to a given matrix, equality of a mean vector	
	and a covariance matrix to a given vector and a given matrix.	
IV	[Course Outcome (s) No.: CO4]	15
	Classification and discrimination procedures for	
	discrimination between two multivariate normal populations,	
	sample discriminant function, tests associated with	
	discriminant functions, classification into more than two	
	multivariate normal populations. Principal components,	
	canonical variables and canonical correlations. Multivariate	
	analysis of variance [MANOVA] of one-way classified data.	
	Wilk's lambda criterion.	

- 1. Johnson, R.A. and Wichern, D.W.: (2015). Applied Multivariate Statistical Analysis, Sixth Edition, Pearson Education India.
- 2. Hardle, W.K. and Hlavka, Z. (2015): Multivariate Statistics, Springer.
- 3. Anderson, T.W. (2003): An Introduction to Multivariate Statistical Analysis, Third Edition, Wiley.
- 4. Härdle, W.K. and Simar, L. (2015): Applied Multivariate Statistical Analysis, Springer.
- 5. Singh, B.M. (2004): Multivariate statistical analysis, South Asian Publishers.

Course	Course Name: Statistical Inference-II				Course Code: SBS ST 01 302 C 3104			
No:								
CC-11								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	III	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks: 100	Examination	on Duration	n:	3 ho	ours		
CIE: 30	Marks							
TEE: 70	Marks	Pre-requisite of course: Distribution theory, Bayes theorem, joint						
		and conditional distribution.						
Course	The main objective	of the cours	e is to provi	de the de	etailed kno	owledge of	the characterization	
Objective	of another inferenti	al procedure	that is Baye	esian and	l non-para	metric Infe	erence.	
Course	After completing th	nis course, str	udent is exp	ected to	learn the f	following:		
Outcomes:								
	CO1: Describe the	e role of the	posterior d	istributio	on, the lik	elihood fui	nction, prior and the	
	posterior dis	stribution abo	out a parame	eter in Ba	ayesian fra	mework.		
	CO2: Understand	inferences fo	or lifetime m	nodels in	Bayesian	framework	C.	
	CO3: Learn the basic concepts of nonparametric techniques.							
	CO4: Understand the sequential probability ratio test and its application.							
COURSE SYLLABUS								

Unit No.	Content of Each Unit	Hours of Each Unit
I	Elements of the Bayesian paradigm. Introduction to prior and	15
	posterior distributions, loss functions. Bayes risks, Bayesian	
	paradigm versus classical paradigm. Prior distribution,	
	subjective determination of prior distribution, improper	
	priors, non-informative priors, conjugate prior families,	
	construction of conjugate families using sufficient statistic	
	for fixed dimensions.	
II	Bayesian estimation of parameters of some well-known	15
	distributions like binomial, multinomial, Poisson, normal,	
	lognormal, exponential, Rayleigh and Weibull distributions.	
	Credible and highest posterior density (HPD) interval, HPD	

	credible intervals in case of normal, gamma, exponential and	
	Weibull distributions.	
III	Concept of nonparametric and distribution-free methods,	15
	probability integral transformation, empirical distribution	
	function, kernel, one-sample and two-sample U-Statistics,	
	test of independence, sign test, rank-order statistics,	
	Wilcoxon signed-Rank test. Wald-Wolfowitz runs test,	
	Kolmogorov-Smirnov two-sample test, median test, Mann-	
	Whitney U test.	
TX/	The acquestic large hability set is test (CDDT) and its	15
IV	The sequential probability ratio test (SPRT) and its	15
	application to binomial, Poisson, geometric, exponential,	
	normal, operating characteristic (OC) function of SPRT,	
	average sample number (ASN) function and their	
	application, Wald's fundamental identity and its uses.	

- 1. Berger, J.O. (2013): Statistical Decision Theory and Bayesian Analysis, Springer.
- 2. Hollander, M., Wolfe, D. and Chicken, E. (2013): Nonparametric Statistical Methods, 3rd Edition, Wiley.
- 3. Gibbons, J.D. and Chakraborti, S. (2010): Nonparametric Statistical Inference, 5th Edition, CRC Press.
- 4. Rohatgi, V.K. & Saleh, A.K. Md.E. (2015). An Introduction to Probability and Statistics, 3rd Edition. Wiley.

Course	Course Name: Econometrics			Course Code: SBS ST 01 303 C 3104				
No:								
CC-12								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	III	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks: 100	Examination	on Duratio	n:	3 ho	urs		
CIE: 30	Marks							
TEE: 70	Marks	Pre-requisi	ite of cour	se: Line	ar algebra	ı, Regressi	on analysis.	
Course	The purpose of thi	s course is to	give stude	nts a soli	id foundati	on in econo	metric techniques,	
Objective	various functions f	for economic	analysis ar	nd future	forecasting	g.		
Course	On completion of	this course, s	tudents wil	l be able	to:			
Outcomes:	co1: Understand the	ne basic conc	epts of eco	nometric	models.			
	co1: Learn know	ledge of var	rious econ	ometric	models, e	stimation n	nethods and related	
	econometric theor	ies.						
	co1: Understand the statistical techniques to model relationships between variables and make							
	predictions.							
	co1: Learn how to conduct econometric analysis of data.							
	COURSE SYLLABUS							

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks.

Unit I will be taught via online mode.

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Introduction to econometrics. A review of least squares and maximum likelihood estimation methods of parameters in classical linear	15
	regression model and their properties. Generalized least squares estimation and prediction, construction of confidence regions and tests of hypotheses. Regression analysis under linear restrictions, restricted least squares estimation method and its properties. Autocorrelation, sources and consequences, Autoregressive process tests for autocorrelation, Durbin Watson test.	
II	Problem of Multicollinearity, its implications. Source of multicollinearity, tools for handling the problem of multicollinearity. Remedies for multicollinearity. Ridge regression. Heteroskedasticity, consequences and tests for it, estimation procedures under heteroskedastic disturbances, Bartlett's test, Breusch Pagan test and Goldfelf Quandt test. Dummy Variable Models.	15

III	Specification Error Analysis, Tests for Structural Change and Stability,	15
	Asymptotic theory and regressors. Stein-Rule Estimation. Instrumental	
	variable estimation. Measurement Error Models.	
IV	Simultaneous equations model, problem of identification, necessary and	15
	sufficient condition for the identifiability of parameters in a structural	
	equation, ordinary least squares, indirect least squares, two-stage least	
	squares and limited information maximum likelihood method.	

- 1. Gujrati, D.N. & Porter, D.C. (2017). Basic Econometrics, 6th Edition. McGraw Hill.
- 2. Maddala, G.S. & Lahiri, K. (2010). Introduction to Econometrics, 4th Edition. Wiley.
- 3. Greene, W.H. (2012). Econometric Analysis, 7th Edition. Pearson.
- 4. Studenmund, A.H. & Johnson, B.K. (2017). Using Econometrics: A Practical Guide, 7th Edition. Pearson.

Course	Course Name: Seminar			Course Code: SBS ST 01 304 C 4004				
No:								
CC-13								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	III	4	0	0	4	Total Hours: 60	
Total Evalu	ation Marks:	Examination	n Duratio	on:	3 H	ours		
CIE: 30			Pre-requisite of course: Theoretical and applied knowledge of all courses studied up to Sem III.					
TEE: 70	Marks	courses studied up to semi iii.						
Course	To inculcate the	habit of self-l	earning					
Objective								
Course	Students will be	capable to st	udy indep	pendentl	y and app	ly the stati	stical techniques in	
Outcomes:	real life problen	ns. They will	be capal	ble to p	resent the	study in t	he unified manner	
	starting from objective of the project problem, methodology used, and presentation of							
	results.							
	COURSE SYLLABUS							

Unit No.	Content of Each Unit	Hours
Each student	must present at least one seminar which will be followed by discussion	60
session with	participation from other students and the concerned faculty members	
present. The	student must also submit the slides/write-up of the presentation content	
to the Studer	nt Advisor (Faculty). The seminar, participation in discussions, the	
submitted sli	des and overall attendance (as per ordinance) will form the basis of the	
evaluation. T	There will be no separate final exam for this course.	

Course	Course Name: Practical 103			Course Code: SBS ST 01 305 C 0044				
No:								
CC-14								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 8	
2021-2023	M.Sc. Statistics	III	0	0	4	4	Total Hours: 120	
Total Evalu	ation Marks:	Examination	on Duratio	on:	3 ho	ours		
CIE: 30	Marks	Pre-requisite of course: Basic knowledge of all courses studied in Sem III						
TEE: 70	Marks							
Course	To trained the stud	dents to apply	statistical	techniqu	ies in the ar	nalysis of co	orrelated	
Objective	multivariate data.	Modeling of	financial t	ime serie	es data, app	lying the no	on-parametric	
	methods in the ab	sence of norm	ality assu	mption.				
Course	Students can ana	alyze multiva	riate data	, non no	rmal data.	They will l	be capable to apply	
Outcomes:	Bayes techniques	to incorpora	ite the pri	or infori	nation to i	improve th	e results of classical	
	statistics.							
	COURSE SYLLABUS							

Unit No.	Content of Each Unit	Hours
Practicals ba	sed on Multivariate Analysis (SBS ST 01 301 C 3104), Statistical	120
Inference – I	II (SBS ST 01 302 C 3104) and Econometrics (SBS ST 01 302 CC 4004).	

Course	Course Name: Stochastic Processes				Course Code: SBS ST 01 301 DCE				
No:						3104			
DCEC-3									
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per		
							Week: 4		
2021-2023	M.Sc. Statistics	III	3	1	0	4	Total Hours: 60		
Total Evalua	Total Evaluation Marks: 100		Examination Duration: 3 Hours						
CIE: 30	Marks								
TEE: 70 1	Marks	Pre-requisite of course: Distribution theory, sequence of random							
		variables, Multivariate distribution.							
Course	The objective of thi	s course is to	apprise the	students	with the l	oasic concep	ots of the theory of		
Objective	stochastic processes	s in continuo	ıs time, also	to make	them able	e to use vari	ous analytical and		
	computational tech	niques to stud	ly stochastic	models	that appea	ars in applic	ations.		
Course	After completing th	is course, stu	dent is expe	ected to le	earn the fo	ollowing:			
Outcomes:	CO1: Study the fur	ndamental con	ncept of stoc	chastic pr	rocesses a	nd its applic	cations.		
	CO2: Understand Markov processes and Markov chains and their applications in real world.					ions in real world.			
	CO3: Study the branching process and its properties.								
	CO4: Understand Poisson processes and its variations.								
		COURSE SYLLABUS							

Unit No.	Content of Each Unit	Hours of Each Unit
I	Stochastic Processes: Introduction, classification according to	15
	state space and time domain. Countable state Markov chains,	
	transition probability matrix, Chapman-Kolmogorov equations,	
	calculation of n-step transition probabilities and their limits,	
	stationary distribution.	
II	Branching Processes: Properties of generating function of	15
	branching processes, probability of ultimate extinction,	
	distribution of the total number of progeny, generalization of	
	the classical Galton-Watson branching process, general	
	branching processes, random walk and gambler's ruin problem.	
III	Continuous-time Markov Processes: Poisson process and	15
	related distributions, generalizations of Poisson process, simple	

	birth-process, simple death-process, simple birth-death process,	
	linear birth-death process. First passage time distribution.	
IV	Renewal Theory: Elementary renewal theorem and	15
	applications. Statement and uses of key renewal theorem,	
	central limit theorem for renewals, study of residual and excess	
	lifetime's process. Renewal reward Process, Markov renewal	
	and semi- Markov processes, Markov renewal equations.	

- 1. Medhi, J. (2012). Stochastic Processes, 3rd Edition. New Age International.
- 2. Ross, S.M. (2016). Stochastic Processes, 2nd Edition. Wiley India.
- 3. Karlin, S. & Taylor, H.M. (2012). A First Course in Stochastic Processes, 2nd Edition. Academic Press.
- 4. Prabhu, N.U. (2010). Stochastic Processes: Basic Theory and its Applications. World Scientific.

Course	Course Name: De	Course Code: SBS ST 01 302 DCE					
No:					3104		
DCEC-4							
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per
							Week: 4
2021-2023	M.Sc. Statistics	III	3	1	0	4	Total Hours: 60
Total Evalu	ation Marks: 100	Examinatio	n Duratio	on:	3 H	ours	
CIE: 30	Marks	Pre-requisit	te of cour	se: Time	series da	ata, quanti	tative techniques.
TEE: 70	Marks						
Course	The objective of th	e course is to	make the	students	conversan	t with vario	ous techniques used
Objective	in summarization a	and analysis of	data relat	ed to der	nographic	and vital e	vents.
Course	After completing th	nis course, stu	dent is ex	pected to	learn the	following:	
Outcomes:							
	CO1: Understand	the basic cond	cepts of de	emograph	ny and vita	al statistics.	
	CO2: Understand	the trends of	mortality a	and comp	oare and co	ontrast amo	ng different age and
	sex group.						
	CO3: Identify the	components of	of populati	on chang	ge, includi	ng the effec	ets of changing birth,
	death and m	igration rates,	and demo	onstrate t	heir influe	ences on age	e structure.
	CO4: Do populati	on projection	by differe	nt metho	ds.		
			IDGE GVI				

NOTE:

Unit No.	Content of Each Unit	Hours of Each Unit
I	Coverage and content errors in demographic data, use of balancing equations and Chandrasekharan-Deming formula to check completeness of registration data, adjustment of age data. Use of Whipple, Myer and UN indices, population composition, dependency ratio, population transition theory.	15
II	Measures of Fertility: Stochastic models for reproduction, distribution of time to first birth, inter-live birth intervals and	15

	of number of births. Estimation of parameters, estimation of parity progression ratio from open birth interval data.	
III	Measures of Mortality: Construction of abridged life tables, distribution of life table functions and their estimation. Stable and quasi-stable populations, intrinsic growth rate models for population growth and their fitting to population data. Stochastic models for population growth.	15
IV	Stochastic models for migration and for social and occupational mobility based on Markov chains. Estimation of measures of mobility. Methods for population projection. Use of Leslie matrix. Nuptuality and its measurements.	15

- 1. Kumar, R. (2006): Technical Demography, New age International (P) Ltd, New Delhi.
- 2. Samuel, P., Patrick, H. and Michel, G. (2000): Demography: Measuring and Modeling Population Processes, Wiley-Blackwell.
- 3. Rowland, D.T. (2003): Demographic Methods and Concepts, Oxford university press, Inc., New York.
- 4. Pathak, K. B. and Ram, F. (2013): Techniques of Demographic Analysis, Himalaya Publishing House.
- 5. Keyfitz, N. and Caswell, H. (2005): Applied Mathematical Demography, Springer.

Course	Course Name: Minor Project/Dissertation				Course Code: SBS ST 01 401 PROJ			
No:				00016				
CC-15								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: -	
2021-2023	M.Sc. Statistics							
		IV	-	-	-	16	Total Hours: -	
Total Evalu	ation Marks:	Examination Duration: -						
400				· ·				
CIE: 12	0 Marks	Pre-requisi	ite of cour	se: Kno	wledge of a	all courses	studied in the	
TEE: 28	0 Marks	M. Sc. pro	gramme.					
Course	To inculcate the	habit of self-l	learning a	mong th	e students			
Objective								
Course	Students will be	capable to st	udv inden	endentl	v and appl	v the statis	stical techniques in	
Outcomes:	Students will be capable to study independently and apply the statistical techniques in real life problems. They will be capable to present the study in the unified manner							
	starting from objective of the project problem, methodology used, and presentation of							
	results.							
COLIDGE CVI I ARIIC								

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Content

The aim of the dissertation or project work is to familiarize the students with advanced research. The topic for the project work is to be decided by the supervisor/guide concerned. The project report/ dissertation is to be evaluated by a committee constituted by the Head of Department of Statistics having at least one external expert.

Course	Course Name: On	S	Course Code:						
No:				SBS ST 01 401 DCE 3104					
DCEC-5									
Batch:	Programme: Semester: L T P Credits Contact I								
							Week: 4		
2021-2023	M.Sc. Statistics	IV	3	1	0	4	Total Hours: 60		
Total Evalu	nation Marks: 100	Examination	n Duratio	n:	3 H	lours			
CIE: 30	Marks	Pre-requisi	te of cour	rse: Dist	tribution	theory, jo	oint, marginal and		
		conditional distributions.							
	Marks								
Course	The objective of th	e course is to	learn gene	eral strat	egies for p	problems ab	oout order statistics		
Objective	and how to learn t	o find the med	lian (or k th	largest)	in linear d	average-cas	se number of		
	comparisons (and	time).							
Course	After completing t	his course, stu	ident is exp	pected to	learn the	following:			
Outcomes:									
	CO1: Understand	the basic conc	epts of ord	er statisti	ics, joint,	marginal an	d conditional probabili		
	distributions of ord	der statistics.							
	CO2: Learn about	distribution-f	ree confide	ence inte	rvals for p	opulation q	uantile and distributio		
	free tolerance inter	rvals for popu	lation distr	ibutions.					
	CO3: Construct th	ne recurrence i	elations ar	nd identit	ies for mo	oments of or	rder statistics.		
	CO4: Enhanced v	vith the conce	pts of dist	ributions	of order	statistics fo	r independently and n		
	identically distribu	ited variates a	nd also for	depende	ent variate	s.			
	I	COI	IDCE CVI	TADIIC	7				

NOTE:

Unit No.	Content of Each Unit	Hours of Each Unit
I	Introduction to order statistics, joint, marginal and conditional	15
	distributions of order statistics (discrete and continuous	
	cases). Distribution of the range and other systematic	
	statistics, order statistics as a Markov chain. Examples based	
	on discrete and continuous distributions.	
II	Distribution-free confidence intervals for population quantiles	15
	and distribution-free tolerance intervals. Distribution-free	
	bounds for moments of order statistics and of the range.	

	Approximations to moments in terms of the quantile function	
	and its derivatives.	
	lemma, uniformly most powerful (UMP) tests.	
III	Moments of order statistics, recurrence relations and identities	15
	for moments of order statistics. Large sample approximations	
	to mean and variance of order statistics. Asymptotic	
	distributions of order statistics.	
IV	Order statistics for independently and not identically	15
	distributed (i.ni.d.) variates, Concomitants of order statistics.	
	Random division of an interval and its applications. Order	
	statistics from a sample containing a single outlier. Concepts	
	of record values and generalized order statistics.	

- 1. Shahbaz, M.Q., Ahsanullah, M., Shahbaz, S.H. & Al-Zahrani, B.M. (2016). Ordered Random Variables: Theory and Applications. Springer.
- 2. David, H.A. & Nagaraja, H.N. (2005). Order Statistics, 3rd Edition. Wiley.
- 3. Ahsanullah, M., Nevzorov, V.B. & Shakil, M. (2013). An Introduction to Order Statistics, Atlantis Studies in Probability and Statistics, Vol. III. Atlantis Press.
- 4. Arnold, B.C., Balakrishnan, N. & Nagaraja, H.N. (2008). A First Course in Order Statistics. SIAM Publishers.

Course	Course Name: Survival Analysis			Course Code: SBS ST 01 402 DCE				
No:					3104			
DCEC-6								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	IV	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks: 100	Examination	on Duration	n:	3 Hou	ırs		
CIE: 30	Marks							
TEE: 70	Marks	Pre-requisi	te of cou	ırse: D	istribution	theory,	order statistics,	
		sampling.						
Course	The objective of the	is course is to	provide the	e applica	tions of stat	istics in ha	ndling survival data.	
Objective	This course introd	uces the con	cept of cen	soring a	and various	life time o	distributions used to	
	analyze such data.							
Course	On completion of t	his course, s	tudents will	be able	to:			
Outcomes:	• Understand bas	sic concepts of	of survival o	data and	lifetime mo	dels.		
	• Learn how to h	andle censor	ed data und	ler differ	ent scenario	os.		
	• Learn non-para	metric estim	ation of sur	vival fur	nction.			
	• Learn the Log-Rank test for testing differences between survival curves and Cox'							
	regression model for estimating and testing effects of covariates.							
COURSE SYLLARUS								

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Concepts of survival function, failure rate or hazard function, mean	15
	residual life and their properties. Ageing classes- IFR, DFR, IFRA,	
	DFRA, NBU, NBUE, BT and UBT, scaled TTT transform and	
	characterization of ageing classes.	
II	Life testing plans or censoring methods, right and left censoring,	15
	concepts of Type-I (time) and Type-II (failure), random censoring	
	schemes. Life distributions-exponential, Weibull, log-logistic, gamma,	
	log-normal distributions. Parametric inference- estimation of parameters	
	associated with various life time distributions and life testing plans.	
III	Nonparametric methods of estimation of survival function - actuarial	15
	estimator, Kaplan-Meier estimator. Tests of exponentiality against non-	
	parametric classes-Total time on Test, Deshpande Test.	
IV	Two sample problem - Gehan test, log-rank test, Mantel-Haenzel test.	15
	Cox proportional hazards model, competing risks model.	
Suggested I	Readings	

- 1. Deshpande, J.V. & Purohit, S.G. (2016). Life Time Data: Statistical Models and Methods, 2nd Edition. Word Scientific.
- 2. Lee, E.T. & Wang, J.W. (2015). Statistical Methods for Survival Data Analysis, 4th Edition. Wiley.
- 3. Miller, R.G. (2011). Survival Analysis, 2nd Edition. Wiley.
- 4. Moore, D.F. (2016). Applied Survival Analysis using R. Springer.

Course	Course Name: De	and sequer	Course Code: SBS ST 01 403 DCE					
No:	analysis			3104				
DCEC-7								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: 4	
2021-2023	M.Sc. Statistics	IV	3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks: 100	Examination	on Duratio	 n:	3 H	ours		
CIE: 30	Marks	Pre-requisite of course: Distribution theory, Bayesian analysis,						
TEE: 70	Marks	sequence of random variables.						
Course	The main objective	of this cours	se is to prov	ide the d	letailed kr	nowledge of	f the decision theory	
Objective	and sequential anal	ysis.						
Course	After completing the	nis course, stu	ıdent is exp	ected to	learn the	following:		
Outcomes:								
	CO1: Understand	the concept of	of decision	theory ar	nd sequen	tial analysis	S.	
	CO2: Learn how to perform posterior decision analysis and hypothesis testing.							
	CO3: Understand the decision rule and fundamental identity in sequential analysis.							
	CO4: Learn the wider applications of decision principles of Bayesian and frequentist							
	approaches.							
COLIDGE CVI I ADLIC								

NOTE:

Unit No.	Content of Each Unit	Hours of Each Unit
I	Elements of decision theory: Expected loss, decision rules	15
	and risks - Bayesian expected loss, frequentist risks,	
	randomized and nonrandomized decision rules, admissible	
	decision rule, complete, essential complete and minimal	
	complete classes of decision rules and their relationship,	
	minimax and Bayes decision rule, estimation testing viewed	
	as decision rule problem, Bayes and minimax estimators.	
	Minimax and Bayes tests in simple cases.	
II	Decision principles: the conditional Bayes decision principle	15
	and frequentist decision principles. Misuse of classical	
	Inference procedures, the frequentist perspective, the	

	conditional perspective, the likelihood principle, choosing a	
	paradigm or decision principle. Utility theory: introduction,	
	the utility of money.	
III	Bayesian decision theory: Posterior decision analysis,	15
	estimation, finite action problems and hypothesis testing.	
	Minimax Analysis: Introduction, game theory, basic	
	elements, general techniques for solving games, finite games,	
	the minimax theorem.	
TT7		15
IV	Sequential Decision rule: Stopping rule, terminal decision	15
	rule. Bayes and minimax sequential decision Rules. Invariant	
	sequential decision problems, sequential test of a simple	
	hypothesis. The sequential probability ratio test, the	
	fundamental identity of sequential analysis.	

- 1. Robert, C.P. (2013): The Bayesian Choice: A Decision Theoretic Motivation, Springer.
- 2. Berger J.O. (2013): Statistical Decision Theory and Bayesian Analysis, Springer.
- 3. Wald, A. (2013): Sequential Analysis, Dover Publications.
- 4. Mukhopadhyay, N. and de Silva, B.M. (2008): Sequential Methods and Their Applications, CRC Press.

Course	Course Name: Statistical Computing			Course Code: SBS ST 01 404 DCE			
No:					3104		
DCEC-8							
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per
							Week: 4
2021-2023	M.Sc. Statistics	IV	3	1	0	4	Total Hours: 60
Total Evaluation Marks: 100 Examination Duration: 3 Hours							
CIE: 30 Marks							
TEE: 70 Marks Pre-requi			e-requisite of course:				
Course	The students will study the statistical simulation using Computers. It contains introduction to						
Objective	System, Models, Simulation, Random Number Generation and Variance Reduction						
	Techniques.						
Course	On completion of this course, students will be able to:						
Outcomes:	co1: Understand the basic ideas of random number generation using different techniques.						
	co2: Learn theoretical methods and practicable techniques of statistical simulations.						
	co3 : Understand how to apply Monte Carlo simulations and the EM algorithm.						
	co4 : Learn how to handle real world problems with large scale data.						
COURSE SYLLABUS							

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	Introduction and need of statistical simulation. Random number	15
	generation, requisites of a good random number, methods of random	
	number generation such as linear congruential and mixed congruential,	
	statistical tests for pseudo random numbers. Methods of generating	
	random variables such as inverse transforms, composition and	
	acceptance-rejection methods.	
II	Monte Carlo integration and variance reduction techniques: Hit or miss	15
	Monte Carlo method, sample mean Monte Carlo method, importance	
	sampling, correlated sampling control variates, stratified sampling,	
	antithetic variates, partition of region.	
III	EM algorithm: applications to missing and incomplete data problems,	15
	mixture models. Smoothing with kernels, density estimation, simple non-	
	parametric regression. Smoothing with kernels: density estimation,	
	choice of kernels.	

IV	Simulation based testing: simulating test statistics and power functions,	15
	permutation tests. Bootstrap methods: resampling paradigms, bias and	
	standard errors, confidence intervals, bootstrapping in regression.	
	Jackknife and cross validation: Jacknife in sample surveys, cross-	
	validation for tuning parameters.	

Suggesting Readings

- 1. Rubinstein, R.Y. and Kroese, D.P. (2008): Simulation and the Monte Carlo Method, Second Edition, Wiley.
- 2. Voss, J. (2014): An Introduction to Statistical Computing: A Simulation Approach, Wiley.
- 3. Ross, S.M. (2012): Simulation, Fifth Edition, Academic Press.
- 4. Thomopoulos, N.T. (2013): Essentials of Monte Carlo Simulation, Springer.

Course	Course Name: Major Project/Dissertation				Course Code: SBS ST 01 401 PROJ			
No:				00024				
CC-15								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per	
							Week: -	
2021-2023	M.Sc. Statistics							
		IV	-	-	-	24	Total Hours: -	
Total Evaluation Marks: 600		Examination Duration: -						
CIE: 180 Marks		Pre-requisite of course:						
TEE: 420 Marks								
Course		1						
Objective								
Course								
Outcomes:								
COURSE SYLLABUS								

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Content

The aim of the dissertation or project work is to familiarize the students with advanced research. A departmental committee will distribute the topics according to the skill and merit of the students. The project report/dissertation will be evaluated by a committee constituted by the Head of Department of Statistics having at least one external expert.

9. Teaching-Learning Process

- Lectures
- Discussions
- Simulations
- Role Playing
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-embedded Learning

10. Implementation of Blended Learning

Blended Learning is a pedagogical approach that combines face to-face classroom methods with computer-mediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasizes student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimizes and compliments the face-to-face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- Student-centric pedagogical approach focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to Select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;
- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- · Better opportunities for experiential learning;
- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

11. Assessment and Evaluation

- Continuous Comprehensive Evaluation at regular after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the programme instead of one-time assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations
- Review of Literature
- Collaborative Assignments

12. Keywords

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Programme Outcomes
- Programme Specific Outcomes
- Course-level Learning Outcomes
- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation

13. References

- National Education Policy-2020. https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
- The draft subject specific LOCF templates available on UGC website. https://www.ugc.ac.in/ugc_notices.aspx?id=MjY5OQ==

14. Appendices